Dissociation between Ventral and Dorsal fMRI Activation during Object and Action Recognition
نویسندگان
چکیده
Neuropsychological case studies suggest the existence of two functionally separate visual streams: the ventral pathway, central for object recognition; and the dorsal pathway, engaged in visually guided actions. However, a clear dissociation between the functions of the two streams has not been decisively shown in intact humans. In this study, we demonstrate dissociation between dorsal and ventral fMRI activation patterns during observation of object manipulation video clips. Parietal areas, such as anterior intraparietal sulcus (aIPS) display grasp viewing-dependent adaptation (i.e., fMR adaptation during repeated viewing of the same object-grasping movement) as well as a contralateral preference for the viewed manipulating hand. Ventral regions, such as the fusiform gyrus, show similar characteristics (i.e., adaptation, contralateral preference), but these depend on object identity. Our results support the hypothesized functional specialization in the visual system and suggest that parietal areas (such as aIPS) are engaged in action recognition, as well as in action planning.
منابع مشابه
Human fMRI Reveals That Delayed Action Re-Recruits Visual Perception
Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI) to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual...
متن کاملWhen Action Observation Facilitates Visual Perception: Activation in Visuo-Motor Areas Contributes to Object Recognition.
Recent evidence suggests an interaction between the ventral visual-perceptual and dorsal visuo-motor brain systems during the course of object recognition. However, the precise function of the dorsal stream for perception remains to be determined. The present study specified the functional contribution of the visuo-motor system to visual object recognition using functional magnetic resonance im...
متن کاملSpecialization and integration of brain responses to object recognition and location detection
Visual information is processed in the brain primarily through two distinct pathways, the dorsal and the ventral visual streams. The present functional magnetic resonance imaging study investigated the specialization and integration of dorsal and ventral streams using tasks of object recognition and location detection. The study included 22 healthy adult volunteers who viewed stimuli consisting...
متن کاملSimilarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses repre...
متن کاملOrientation sensitivity to graspable objects: an fMRI adaptation study.
It has been proposed that vision-for-perception and vision-for-action are subserved by distinct streams of visual processing, the ventral and dorsal stream, respectively [Milner, A. D., Goodale, M. A., 1995. The visual brain in action. Oxford University Press, Oxford]. Such a distinction has been supported by a recent functional magnetic resonance (fMR) adaptation study [Valyear, K. F., Culham,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 47 شماره
صفحات -
تاریخ انتشار 2005